Crystal Structure

Communications

ISSN 0108-2701

[N, N^{\prime}-Bis(5-bromosalicylidene)-1,3diaminopropane]nickel(II) and [N, N^{\prime}-bis(5-chlorosalicylidene)-1,3-diaminopropane]copper(II)

Ayhan Elmali, ${ }^{\text {a }}{ }^{\mathbf{*}} \boldsymbol{+}$ C. Tuğrul Zeyrek, ${ }^{\text {a }}$ Yalçın Elerman ${ }^{\mathbf{a}} \dagger$ and Ingrid Svoboda ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Beșevler, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Strukturforschung, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 23, D-64287, Darmstadt, Germany
Correspondence e-mail: elmali@science.ankara.edu.tr

Received 14 April 2000
Accepted 26 July 2000

The title compounds, $\left\{4,4^{\prime}\right.$-dibromo-2,2'-[1,3-propanediylbis-(nitrilomethylidyne- N)]diphenolato- O, O^{\prime}]nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{17^{-}}\right.\right.$ $\mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$)], and $\left\{4,4^{\prime}\right.$-dichloro-2,2'-[1,3-propanediylbis(ni-trilomethylidyne- N)]diphenolato- $\left.O, O^{\prime}\right\} \operatorname{copper}(\mathrm{II}), \quad\left[\mathrm{Cu}\left(\mathrm{C}_{17^{-}}\right.\right.$ $\mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$)], lie on crystallographic twofold axes. In both structures, the metal coordination sphere is a tetrahedrally distorted square plane formed by the four-coordinate $\mathrm{N}_{2} \mathrm{O}_{2}$ donor set of the Schiff base imine-phenol ligands. In the Ni compound, the $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{N}$ distances are 1.908 (3) and 1.959 (4) \AA, respectively, while in the Cu compound, the $\mathrm{Cu}-$ O and $\mathrm{Cu}-\mathrm{N}$ distances are 1.907 (2) and $1.960(2) \AA$, respectively. The two Schiff base moieties, which themselves are nearly planar, are inclined at an angle of 29.26 (7) ${ }^{\circ}$ for the Ni compound and $29.26(5)^{\circ}$ for the Cu compound.

Comment

Metal derivatives of Schiff bases have been extensively studied, and nickel(II) and copper(II) complexes play a major role in both synthesis and structural research (Garnovskii et al., 1993). Several complexes of salicylideneiminato (Kessissoglou et al., 1987, 1992; Bhatia et al., 1981; Chen et al., 1989; Calligaris et al., 1972; Yao et al., 1997) and 2-hydroxy-1naphthaldimine derivatives (Elerman et al., 1996; Elerman, Elmali, Svoboda \& Fuess, 1998; Cariati et al., 1985) have been studied. Recently, we studied the structure of the copper(II) complex of N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidine)-1,3propanediamine (Kabak et al., 1999). We report here the results of the reactions of nickel(II) with the tetradentate ligand N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidine)-1,3-propanediamine and copper(II) with the tetradentate ligand N, N^{\prime} -

[^0]bis(5-chloro-2-hydroxybenzylidine)-1,3-propanediamine, to form monomeric Schiff base complexes of nickel(II) and copper(II).

(I)

(II)

The structures of $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, (I), and $[\mathrm{Cu}-$ $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$], (II), are isomorphous. Both compounds have crystallographic twofold axes passing through the metal ions. The C9 atoms of compounds (I) and (II) are disordered about the twofold axis and not at the special position. The disorder observed in compounds (I) and (II) was also observed in similar monomer compounds (Kabak et al., 1999; Akhtar \& Drew, 1982). The molecules of (I) and (II) have the cis form as imposed by the geometry of the tetradentate ligand. In both structures, the metal ion has a tetrahedrally distorted square-planar coordination geometry. The dihedral angles between the $M \mathrm{~N}_{2}$ plane and the $M \mathrm{O}_{2}$ plane ($M=\mathrm{Ni}$ or Cu) are 36.1 (2) ${ }^{\circ}$ for (I) and 36.19 (16) ${ }^{\circ}$ for (II). In compound (I), the two distances $\mathrm{Ni}-\mathrm{O}$ of 1.908 (3) \AA and $\mathrm{Ni}-\mathrm{N}$ of 1.959 (4) \AA are both larger than the comparable distances of 1.829 (mean $\mathrm{Ni}-\mathrm{O}$) and $1.859 \AA$ (mean $\mathrm{Ni}-\mathrm{N}$) in N, N^{\prime} ethylenebis(salicylideneiminato)nickel (Shkol'nikova et al., 1970) and 1.849 (2) (mean $\mathrm{Ni}-\mathrm{O}$) and 1.840 (2) \AA (mean Ni N) for N, N^{\prime}-ethylenebis[(2-hydroxy-1-naphthyl)methaniminato]nickel(II) (Akhtar, 1981). In compound (II), the $\mathrm{Cu}-\mathrm{O}$ bond length of 1.907 (2) \AA is in good agreement with values found in similar structures (Akhtar \& Drew, 1982; Yao et al., 1997). The $\mathrm{Cu}-\mathrm{N}$ bond, 1.960 (2) \AA, is longer than the $\mathrm{Cu}-\mathrm{O}$ distances and a similar difference was noted in the structure of bis(N-methylsalicylideneiminato)copper (Lingafelter et al.,

Figure 1
The molecular structure and atomic labelling scheme of (I). Displacement ellipsoids are plotted at the 50% probability level and all disordered atoms are shown (ORTEP-3; Farrugia, 1997).
1961). The slight increase in metal-to-nitrogen bond distances in (I) and (II) may be attributed to the steric hindrance of the bulkier trimethylene group between the N atoms.

The atoms with the greatest deviation from the coordination planes $\left[\mathrm{N} 1, \mathrm{O} 1, \mathrm{~N} 1^{\mathrm{i}}\right.$ and $\mathrm{O} 1^{\mathrm{i}}$; symmetry code: (i) $1-x, y$, $\frac{1}{2}-z$] are O 1 at 0.458 (3) \AA for (I) and 0.460 (2) \AA for (II). The unique half of the Schiff base ligands of compounds (I) and (II) are reasonably planar. In (I), the maximum deviation from the plane defined by atoms $\mathrm{O} 1, \mathrm{~N} 1, \mathrm{C} 1-\mathrm{C} 9$ and Br is 0.297 (5) \AA A for the N 1 atom. In (II), the maximum deviation from the plane defined by atoms $\mathrm{O} 1, \mathrm{~N} 1, \mathrm{C} 1-\mathrm{C} 9$ and Cl is 0.295 (3) \AA for the N 1 atom. However, the whole ligands are not planar, since the two halves are twisted with respect to one another. The least-squares planes through each half of the molecules are inclined at an angle of 29.26 (7) ${ }^{\circ}$ for (I) and $29.26(5)^{\circ}$ for (II). In the free ligand of compound (I), the same interplanar angle is 66.17 (7) ${ }^{\circ}$ (Elerman, Elmali, Kabak \& Svoboda, 1998).

Figure 2
The molecular structure and atomic labelling scheme of (II). Displacement ellipsoids are plotted at the 50% probability level and all disordered atoms are shown (ORTEP-3; Farrugia, 1997).

All bond distances and angles in the title compounds are within the ranges found for related derivatives (Riley et al., 1986; Zamian et al., 1995; Schmidt et al., 1996).

Experimental

N, N^{\prime}-Bis(5-bromo-2-hydroxybenzylidene)-1,3-propanediamine was prepared by condensation of 5 -bromosalicylaldehyde (10 mmol , 2.01 g) and 1,3-diaminopropane ($5 \mathrm{mmol}, 0.37 \mathrm{~g}$) in ethanol (70 ml). The reaction mixture was stirred for 3 h and the yellow precipitate was collected by filtration and then washed with cold ethanol. Next, nickel(II) acetate tetrahydrate ($1 \mathrm{mmol}, 0.249 \mathrm{~g}$) in methanol (50 ml) and N, N^{\prime}-bis(5-bromo-2-hydroxybenzylidene)-1,3-propanediamine $(1 \mathrm{mmol}, 0.263 \mathrm{~g})$ in methanol (70 ml) were mixed and heated under reflux for 30 min . The resulting product was recrystallized from acetonitrile by slow evaporation of the solvent at room temperature. Compound (II) was prepared from solutions of copper(II) acetate monohydrate ($0.5 \mathrm{mmol}, 0.099 \mathrm{~g}$) in methanol (25 ml) and $N, N^{\prime}-$ bis(5-chloro-2-hydroxybenzylidene)-1,3-propanediamine (0.5 mmol , 0.230 g) in dioxane (50 ml). The solutions were mixed and the reaction mixture heated under reflux for 30 min . Single crystals of the product were obtained on cooling.

Compound (I)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=496.83$
Monoclinic, C2/c
$a=21.466$ (3) A
$b=8.1670(10) \AA$
$c=9.495$ (3) \AA
$\beta=93.07$ (2) ${ }^{\circ}$
$V=1662.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.985 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.65-13.28^{\circ}$
$\mu=5.99 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, dark blue
$0.40 \times 0.05 \times 0.03 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.75, T_{\text {max }}=0.84$
2249 measured reflections
1628 independent reflections
1016 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0349 P)^{2}\right. \\
&+4.1291 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.085$
$S=0.966$
1628 reflections
114 parameters
H-atom parameters constrained
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.97^{\circ}$
$h=-26 \rightarrow 26$
$k=-10 \rightarrow 0$
$l=-11 \rightarrow 3$
3 standard reflections frequency: 120 min intensity decay: 2.0%

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Ni} 1-\mathrm{O} 1$	$1.908(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.414(6)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$1.959(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.365(6)$
$\mathrm{Br} 1-\mathrm{C} 4$	$1.897(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.383(6)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.300(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.371(6)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.289(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.410(6)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.480(6)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.436(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.415(6)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.473(7)$
			$97.4(2)$
O1 ${ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1$	$87.23(18)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$127.8(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$153.75(14)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ni} 1$	$123.4(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	$93.39(14)$	$\mathrm{C} 8^{\mathrm{i}}-\mathrm{C} 9-\mathrm{C} 8$	

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Compound (II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=412.74$
Monoclinic, $C 2 / c$
$a=21.022$ (3) A
$b=8.140(2) \AA$
$c=9.416(3) \AA$
$\beta=94.06$ (2) ${ }^{\circ}$
$V=1607.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=1.94-15.86^{\circ}$
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, blue
$0.30 \times 0.08 \times 0.08 \mathrm{~mm}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.79, T_{\text {max }}=0.87$
1946 measured reflections
1568 independent reflections
1274 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.98^{\circ}$
$h=-25 \rightarrow 25$
$k=-10 \rightarrow 0$
$l=-11 \rightarrow 2$
3 standard reflections frequency: 90 min intensity decay: 3.0%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.106$
$S=1.127$
1568 reflections
114 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0648 P)^{2}\right. \\
& \quad+0.4477 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (II).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.907(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.422(4)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.960(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.361(4)$
$\mathrm{Cl} 1-\mathrm{C} 4$	$1.749(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.391(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.298(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.361(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.284(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.409(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.478(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.439(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.420(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.471(6)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$87.44(12)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$97.51(14)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$153.63(10)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$127.66(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$93.27(10)$	$\mathrm{C} 8^{\mathrm{i}}-\mathrm{C} 9-\mathrm{C} 8$	$123.7(4)$

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Geometrical restraints were applied to the $\mathrm{C} 8-\mathrm{C} 9$ distance to prevent anomalous bond distances in the propanediamine chelate ring in (I) and (II). All H atoms were fixed at ideal positions with isotropic displacement parameters constrained to be $1.2 U_{\text {eq }}$ of the parent C atom for the phenyl H atoms and $1.5 U_{\text {eq }}$ for the methylene H atoms.

For both compounds, data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe \& Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

This work was supported by Research Funds of the University of Ankara under grant number 98-05-05-02. AE and YE thank the Alexander von Humboldt Foundation for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1285). Services for accessing these data are described at the back of the journal.

References

Akhtar, F. (1981). Acta Cryst. B37, 84-88.
Akhtar, F. \& Drew, M. G. B. (1982). Acta Cryst. B38, 1149-1154.
Bhatia, S. C., Bindlish, J. M., Saini, A. R. \& Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.
Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385403.

Cariati, F., Ganadu, M. L., Zoroddu, M. A., Mansani, R. \& Quidacciolu, R. (1985). Inorg. Chem. 24, 4030-4033.

Chen, D., Martell, A. E. \& Sun, Y. (1989). Inorg. Chem. 28, 2647-2652.
Elerman, Y., Elmali, A., Kabak, M. \& Svoboda, I. (1998). Acta Cryst. C54, 1701-1703.
Elerman, Y., Elmali, A., Svoboda, I. \& Fuess, H. (1998). Acta Cryst. C54, 10761078.

Elerman, Y., Kabak, M. \& Tahir, M. N. (1996). Acta Cryst. C52, 1154-1156.
Enraf-Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Garnovskii, A. D., Nivorozkhin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Kabak, M., Elmali, A., Kavlakoǧlu, E., Elerman, Y. \& Durlu, T. N. (1999). Acta Cryst. C55, 1650-1652.
Kessissoglou, D. P., Butler, W. M. \& Pecoraro, V. L. (1987). Inorg. Chem. 26, 495-503.
Kessissoglou, D. P., Raptopoulou, C. P., Bakalbassis, E. G., Terzis, A. \& Mrozinski, J. (1992). Inorg. Chem. 31, 4339-4345.
Lingafelter, E. C., Simmons, G. L., Morosin, B., Scheringer, C. \& Freiburg, C. (1961). Acta Cryst. 14, 1222-1225.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. \& Raymond, K. N. (1986). Inorg. Chem. 25, 154-160.

Schmidt, H., Bashirpoor, M. \& Rehder, D. (1996). J. Chem. Soc. Dalton Trans. pp. 3865-3870.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shkol'nikova, L. M., Yumal, E. M., Shugam, E. A. \& Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886-890.
Stoe \& Cie (1991). REDU4. Version 7.08. Stoe \& Cie, Darmstadt, Germany.
Yao, H.-H., Lo, J.-M., Chen, B.-H. \& Lu, T.-H. (1997). Acta Cryst. C53, 10121013.

Zamian, J. R., Dockal, E. R., Castellano, G. \& Oliva, G. (1995). Polyhedron, 14, 2411-2418.

[^0]: \dagger Alexander von Humboldt Fellow.

